
© Copyright 2002 by ILOG

This document and the software described in this document are the property of ILOG and are protected as ILOG trade secrets. They are furnished under a
license or non-disclosure agreement, and may be used or copied only within the terms of such license or non-disclosure agreement.

No part of this work may be reproduced or disseminated in any form or by any means, without the prior written permission of ILOG S.A.

Printed in France

ILOG JViews 5.5

Graph Layout User’s Manual

(Excerpt)

December 2002

C O N T E N T S
Table of Contents

Preface About This Manual . vii

Chapter 1 Introducing the Graph Layout Module . 1

What is the Graph Layout Module of ILOG JViews? .2

Composition of the ILOG JViews Graph Layout Module .2

The ILOG JViews Graph Layout Algorithms .4

Features of the ILOG JViews Graph Layout Module .8

ILOG JViews Graph Layout Module in User Interface Applications 10

Chapter 2 Basic Concepts. 13

Graph Layout: A Brief Introduction .14

Graph Layout in ILOG JViews .16

The Base Class: IlvGraphLayout .17

Basic Operations with IlvGraphLayout .17

Layout Parameters and Features in IlvGraphLayout .20

Chapter 3 Getting Started with Graph Layout . 37

Basic Steps for Using Layout Algorithms: A Summary .38

Sample Java Application .38

Chapter 4 Layout Algorithms . 43

Determining the Appropriate Layout Algorithm .44

Typical Ways for Choosing the Layout .49
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T iii

T A B L E O F C O N T E N T S
Generic Features and Parameters Support .51

Layout Characteristics .52

Topological Mesh Layout (TML) .54

Spring Embedder Layout .72

Uniform Length Edges Layout .81

Tree Layout .94

Hierarchical Layout .134

Link Layout .186

Random Layout .217

Bus Layout .222

Circular Layout .238

Grid Layout .255

Recursive Layout .265

Multiple Layout .282

Chapter 5 Using Advanced Features . 291

Using a Layout Report .292

Using Event Listeners .294

Redrawing the Grapher after Layout .296

Using the Graph Model .297

Laying Out a Non-JViews Grapher .303

Laying Out Connected Components of a Disconnected Graph .304

Laying Out Nested Graphs .306

Saving Layout Parameters and Preferred Layouts .315

Using the Filtering Features to Lay Out a Part of an IlvGrapher 321

Choosing the Layout Coordinate Space .323

Releasing Resources Used During the Layout .328

Defining a New Type of Layout .328

Questions and Answers about Using the Layout Algorithms .333

Chapter 6 Automatic Label Placement. 339

Getting Started with Labeling .340
iv I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

T A B L E O F C O N T E N T S
The Base Classes: IlvLabelingModel and IlvLabelLayout .346

The Annealing Label Layout .354

The Random Label Layout .376

Using Advanced Features .379

Defining Your Own Labeling Model .384

Chapter 7 Using Graph Layout Beans . 391

Graph Layout Classes Available as Beans .392

Creating a Simple Applet Using ILOG JViews Graph Layout Beans 393

Glossary . 411

Index . 419
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T v

T A B L E O F C O N T E N T S
vi I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

P R E F A C E
About This Manual

The ILOG JViews Component Suite provides special support for applications that need to
display graphs, or networks, of nodes and links. Any graphic object can be defined to behave
like a node and can be connected to other nodes via links, which themselves can have many
different forms. Used in conjunction with layout algorithms, the ILOG JViews grapher is
often used to display network topologies for telecommunications networks and systems
management applications.

What Is in This Manual

The ILOG JViews Graph Layout module provides high-level, ready-to-use graph drawing
services that allow you to obtain readable representations easily.

This manual contains the following chapters:

◆ Chapter 1, Introducing the Graph Layout Module describes the Graph Layout module of
ILOG JViews and its features.

◆ Chapter 2, Basic Concepts provides background information and basic concepts for
using Graph Layout.

◆ Chapter 3, Getting Started with Graph Layout provides information to get started
quickly using Graph Layout.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T vii

◆ Chapter 4, Layout Algorithms describes the layout algorithms provided with the Graph
Layout module.

◆ Chapter 5, Using Advanced Features provides information on using a layout report,
using layout event listeners, using a graph model, laying out a non-JViews grapher,
layout out disconnected graphs, saving layout parameters to a file, laying out a portion of
a graph, laying out graphs with nonzoomable objects, and defining new types of layouts.

◆ Chapter 6, Automatic Label Placement describes the label layout facilities provided with
the Graph Layout module.

◆ Chapter 7, Using Graph Layout Beans shows you how to use the ILOG JViews Beans
and the Graph Layout Beans when creating an applet within an Integrated Development
Environment (IDE).

At the end of the manual you will find a Glossary containing definitions of the basic
technical terms used in this manual.

Related Documentation

The following documentation may provide helpful information when using ILOG JViews
Graph Layout.

Books

The first book dedicated to graph layout has been published:

Di Battista, Giuseppe, Peter Eades, Roberto Tammassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, 1999 (see
 http://www.cs.brown.edu/people/rt/gdbook.html or
 http://www.prenhall.com/books/esm_0133016153.html).

Graph layout is closely related to graph theory, for which extensive literature exists. See:

Clark, John and Derek Allan Holton. A First Look at Graph Theory. World Scientific
Publishing Company, 1991.

For a mathematics-oriented introduction to graph theory, see:

Diestel,Reinhard, Graph Theory, 2nd ed. Springer-Verlag, 2000.

A more algorithmic approach may be found in:

Gibbons, Alan. Algorithmic Graph Theory. Cambridge University Press, 1985.

Gondran, Michel and Michel Minoux. Graphes et algorithmes, 3rd ed. Eyrolles, Paris,
1995 (in French).
viii I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

Bibliographies

A comprehensive bibliographic database of papers in computational geometry (including
graph layout) can be found:

The Geometry Literature Database
 (http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html)

The recommended bibliographic survey paper is the following:

Di Battista, Giuseppe, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
“Algorithms for Drawing Graphs: an Annotated Bibliography.” Computational
Geometry: Theory and Applications 4 (1994): 235-282 (also available at
http://www.cs.brown.edu/people/rt/gd-biblio.html).

Journals

The following are electronic journals:

Journal of Graph Algorithms and Applications
 (http://www.cs.brown.edu/publications/jgaa)

Algorithmica
(http://link.springer-ny.com/link/service/journals/00453/)

Computational Geometry: Theory and Applications
(http://www.elsevier.nl/inca/publications/store/5/0/5/6/2/9/)

Journal of Visual Languages and Computing
(http://www.academicpress.com/jvlc)

The following journals occasionally publish papers on graph layout:

Information Processing Letters
(http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/)

Computer-aided Design
(http://www.elsevier.nl/inca/publications/store/3/0/4/0/2/)

IEEE Transactions on Software Engineering
(http://www.computer.org/tse/)

Many papers are presented at conferences in Combinatorics and Computer Science.

Conferences

An annual Symposium on Graph Drawing has been held since 1992. The proceedings are
published by Springer-Verlag in the Lecture Notes in Computer Science series. For the 2001
edition, see
http://link.springer.de/link/service/series/0558/tocs/t2265.htm. For
the 2003 Symposium, to be held in Perugia, Italy, see http://www.gd2003.org.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T ix

x I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

C H A P T E R

1. In
tro

d
u

cin
g

 th
e

G
rap

h
 L

ayo
u

t M
o

d
u

le
1

Introducing the Graph Layout Module

This chapter introduces you to the Graph Layout module of ILOG JViews. The following
topics are covered:

◆ What is the Graph Layout Module of ILOG JViews?

◆ Composition of the ILOG JViews Graph Layout Module

◆ The ILOG JViews Graph Layout Algorithms

◆ Features of the ILOG JViews Graph Layout Module

◆ ILOG JViews Graph Layout Module in User Interface Applications
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 1

W H A T I S T H E G R A P H L A Y O U T M O D U L E O F I L O G J V I E W S ?
What is the Graph Layout Module of ILOG JViews?

Many types of complex business data can best be visualized as a set of nodes and
interconnecting links, more commonly called a graph or a network. Examples of graphs
include business organizational charts, workflow diagrams, telecom network displays, and
genealogical trees. Whenever these graphs become large or heavily interconnected, it
becomes difficult to see the relationships between the various nodes and links (the “edges”).
This is where ILOG JViews Graph Layout algorithms help.

The ILOG JViews Graph Layout module provides high-level, ready-to-use relationship
visualization services. It allows you to take any “messy” graph and apply a sophisticated
graph layout algorithm to rearrange the positions of the nodes and links. The result is a more
readable and understandable picture.

Take a look at two sample drawings of the same graph.

In the second drawing, the layout algorithm has distributed the nodes quite uniformly,
avoiding overlapping nodes and showing the symmetries of the graph. This drawing presents
a much more readable layout than does the first drawing.

Composition of the ILOG JViews Graph Layout Module

The ILOG JViews Graph Layout module is composed of the following packages:

◆ ilog.views.graphlayout: A high-level, generic framework for the graph layout
services provided by ILOG JViews.

Here no format layout algorithm was used.
The nodes were placed randomly when the
graph was drawn.

Using one of the layout algorithms provided
in ILOG JViews, the following drawing was
obtained:
2 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

C O M P O S I T I O N O F T H E I L O G J V I E W S G R A P H L A Y O U T M O D U L E

1. In
tro

d
u

cin
g

 th
e

G
rap

h
 L

ayo
u

t M
o

d
u

le
◆ Layout algorithm packages:

● ilog.views.graphlayout.bus: A layout algorithm designed to display bus
network topologies (that is, a set of nodes connected to a bus node).

● ilog.views.graphlayout.circular: A layout algorithm that displays graphs
representing interconnected ring and/or star network topologies.

● ilog.views.graphlayout.grid: A layout algorithm that arranges the
disconnected nodes of a graph in rows, in columns, or in the cells of a grid.

● ilog.views.graphlayout.hierarchical: A layout algorithm that arranges
nodes in horizontal or vertical levels such that the links flow in a uniform direction.

● ilog.views.graphlayout.link: A layout algorithm that reshapes the links of a
graph without moving the nodes.

ilog.views.graphlayout.link.longlink: For long orthogonal links.
ilog.views.graphlayout.link.shortlink: For short links.

● ilog.views.graphlayout.multiple: A facility that combines multiple layout
algorithms into one graphic object.

● ilog.views.graphlayout.random: A layout algorithm that moves the nodes of
the graph at randomly computed positions inside an user-defined region.

● ilog.views.graphlayout.recursive: A layout algorithm that can be used to
control the layout of nested graphs (containing subgraphs and intergraph links).

● ilog.views.graphlayout.springembedder: A layout algorithm that can be
used to lay out any type of graph.

● ilog.views.graphlayout.topologicalmesh: A layout algorithm that can be
used to lay out cyclic graphs.

● ilog.views.graphlayout.tree: A layout algorithm that arranges the nodes of a
tree horizontally or vertically, starting from the root of the tree. A radial layout mode
allows you to arrange the nodes of a tree on concentric circles around the root of the
tree.

● ilog.views.graphlayout.uniformlengthedges: A layout algorithm that can
be used to lay out any type of graph and allows you to specify the length of the links.

◆ ilog.views.graphlayout.labellayout: A layout algorithm for automatic
placement of labels.

● ilog.views.graphlayout.labellayout.annealing: For close label positioning.

● ilog.views.graphlayout.labellayout.random: For random placement.

◆ ilog.views.graphlayout.swing: Swing components useful for creating
applications mixing ILOG JViews Graph Layout and Swing.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 3

T H E I L O G J V I E W S G R A P H L A Y O U T A L G O R I T H M S
The ILOG JViews Graph Layout Algorithms

The Graph Layout module of ILOG JViews provides numerous ready-to-use layout
algorithms. They are shown below with sample illustrations. In addition, new layout
algorithms can be developed using the generic layout framework of the ILOG JViews Graph
Layout module.

Topological Mesh Layout (TML)

Spring Embedder Layout
4 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

T H E I L O G J V I E W S G R A P H L A Y O U T A L G O R I T H M S

1. In
tro

d
u

cin
g

 th
e

G
rap

h
 L

ayo
u

t M
o

d
u

le
Uniform Length Edges Layout

Circular Layout (Ring/Star)
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 5

T H E I L O G J V I E W S G R A P H L A Y O U T A L G O R I T H M S
Hierarchical Layout

Link Layout
6 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

T H E I L O G J V I E W S G R A P H L A Y O U T A L G O R I T H M S

1. In
tro

d
u

cin
g

 th
e

G
rap

h
 L

ayo
u

t M
o

d
u

le
Tree Layout

Random Layout

Bus Layout
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 7

F E A T U R E S O F T H E I L O G J V I E W S G R A P H L A Y O U T M O D U L E
Features of the ILOG JViews Graph Layout Module

The Graph Layout module provides the following features for using the layout algorithms.
(Note that some of these features are not supported by all the algorithms provided with
ILOG JViews.)

◆ Capability to fit the layout into a manager view or a user-defined rectangle

◆ Capability to take into account the size of the nodes when performing the layout to avoid
overlapping nodes

◆ Capability to perform the layout using only the nodes and links that are on user-defined
layers of the graph

◆ Capability to perform the layout only on those parts of the graph that meet user-defined
conditions

◆ Capability to use non-JViews graphers

◆ Layout reports providing information concerning the behavior of the layout algorithm

◆ Layout-event listeners that can receive and report information during the graph layout

◆ A generic framework for customizing the layout algorithms. The following generic
features and parameters are defined. (Note that not all the layout algorithms provided
with ILOG JViews support all these parameters. Whether a generic parameter is
supported depends on the particular layout algorithm.)

● Allowed Time

This parameter allows the layout algorithm to stop computation when a user-defined
time specification is exceeded.

● Animation

This parameter allows the layout algorithm to redraw the graph after each iteration or
step.

Grid Layout
8 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

F E A T U R E S O F T H E I L O G J V I E W S G R A P H L A Y O U T M O D U L E

1. In
tro

d
u

cin
g

 th
e

G
rap

h
 L

ayo
u

t M
o

d
u

le
● Fixed Nodes

This parameter allows the layout algorithm to preserve the location of the specified
nodes. Certain nodes can be specified as fixed and will not be moved when the layout
is performed. The layout algorithm can “pin” specified nodes in place.

● Fixed Links

This parameter allows the layout algorithm to preserve the shape of the specified
links. Certain links can be specified as fixed and will not be reshaped when the layout
is performed. The layout algorithm can “pin” specified links in place.

● Filtering

The layout algorithms are able to perform the layout using only the nodes and links
that are on user-defined layers of the grapher, or to exclude nodes and links on an
individual basis.

● Layout of Connected Components

This parameter allows you to automatically lay out the connected components of a
disconnected graph.

● Layout Region

This parameter allows the layout algorithm to control the size of the graph drawing.

● Percentage Completion Calculation

This parameter allows the layout algorithm to provide an estimation of how much of
the layout has been completed.

● Random Generator Seed Value

This parameter allows the layout algorithm to use randomly generated numbers that
can be initialized with a user-defined seed value. These seed values are then used
during layout computations to produce different layouts of the graph.

● Save Parameters to Named Properties

This parameter provides support for saving the layout parameters as named properties
in .ivl files.

● Stop Immediately

This parameter allows the layout algorithm to stop layout computation immediately
when an outside event occurs.

● Use Default Parameters

This parameter allows the layout algorithm to return to using default parameter
settings after the default settings have been modified.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 9

I L O G J V I E W S G R A P H L A Y O U T M O D U L E I N U S E R I N T E R F A C E A P P L I C A T I O N S
ILOG JViews Graph Layout Module in User Interface Applications

Many fields use graph drawings and graph layouts in user interface applications. Therefore,
the ILOG JViews Graph Layout module is particularly well-suited for these kinds of
applications. The following is a list of some of the fields where the graph layout capabilities
of the ILOG JViews Graph Layout module can be used:

◆ Telecom and Networking

● LAN Diagrams (Bus Layout, Circular Layout)

● WAN Diagrams (Spring Embedder, Uniform Edge Length)

◆ Electric Engineering

● Logic Diagrams (Hierarchical Layout)

● Circuit Block Diagrams (Hierarchical Layout, Link Layout, Bus Layout)

◆ Industrial Engineering

● Industrial Process Charts (Hierarchical Layout)

● Schematic Design Diagrams (Link Layout, Hierarchical Layout)

● Equipment/Resource Control Charts (Bus Layout, Link Layout)

◆ Business Processing

● Workflow Diagrams (Hierarchical Layout)

● Process Flow Diagrams (Hierarchical Layout)

● Organization Charts (Tree Layout, Circular Layout)

● Entity Relation Diagrams (Link Layout)

● PERT Charts (Hierarchical Layout)

◆ Software Management/Software (Re-)Engineering

● UML Diagrams (Hierarchical Layout, Tree Layout)

● Flow Charts (Hierarchical Layout)

● Data Inspector Diagrams (Link Layout, Hierarchical Layout)

● Call Graphs (Spring Embedder, Uniform Edge Length Layout, Hierarchical Layout,
Tree Layout)

◆ CASE Tools

● Design Diagrams (Link Layout, Hierarchical Layout)

● Dependency Diagrams (Spring Embedder, Uniform Edge Length Layout)
10 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

I L O G J V I E W S G R A P H L A Y O U T M O D U L E I N U S E R I N T E R F A C E A P P L I C A T I O N S

1. In
tro

d
u

cin
g

 th
e

G
rap

h
 L

ayo
u

t M
o

d
u

le
◆ Data Base and Knowledge Engineering

● Semantic Networks (Uniform Edge Length Layout, Spring Embedder, Topological
Mesh Layout)

● Decision Trees (Tree Layout)

● Database Query Graphs (Spring Embedder, Uniform Edge Length Layout,
Hierarchical Layout)

● Qualitative Reasoning and other Artificial Intelligence Diagrams (Topological Mesh
Layout, Spring/Uniform Edge Length Layout)

◆ The World Wide Web

● Web Site Maps (Tree Layout)

● Web Hyperlink Neighborhood (Spring Embedder, Uniform Edge Length Layout,
Circular Layout)
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 11

I L O G J V I E W S G R A P H L A Y O U T M O D U L E I N U S E R I N T E R F A C E A P P L I C A T I O N S
12 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

C H A P T E R

2. B
asic C

o
n

cep
ts
2

Basic Concepts

In this chapter, you will learn about some basic concepts and background information that
will help you when using the ILOG JViews Graph Layout module. The following topics are
covered:

◆ Graph Layout: A Brief Introduction

◆ Graph Layout in ILOG JViews

◆ The Base Class: IlvGraphLayout

◆ Basic Operations with IlvGraphLayout

◆ Layout Parameters and Features in IlvGraphLayout
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 13

G R A P H L A Y O U T : A B R I E F I N T R O D U C T I O N
Graph Layout: A Brief Introduction

This section provides some background information about graph layout in general, not
specifically related to the ILOG JViews Graph Layout module.

Simply speaking, a graph is a data structure which represents a set of entities, called nodes,
connected by a set of links. (A node can also be referred to as a vertex. A link can also be
referred to as an edge or a connection.) In practical applications, graphs are frequently used
to model a very wide range of things: computer networks, software program structures,
project management diagrams, and so on. Graphs are powerful models because they permit
applications to benefit from the results of graph theory research. For instance, efficient
methods are available for finding the shortest path between two nodes, the minimum cost
path, and so on.

Graph layout is used in graphical user interfaces of applications that need to display graph
models. To lay out a graph means to draw the graph so that an appropriate, readable
representation is produced. Essentially, this involves determining the location of the nodes
and the shape of the links. For some applications, the location of the nodes may be already
known (based on the geographical positions of the nodes, for example). However, for other
applications, the location is not known (a pure “logical” graph) or the known location, if
used, would produce an unreadable drawing of the graph. In these cases, the location of the
nodes must be computed.

But what is meant by an “appropriate” drawing of a graph? In practical applications, it is
often necessary for the graph drawing to respect certain quality criteria. These criteria may
vary depending on the application field or on a given standard of representation. It is often
difficult to speak about what a good layout consists of. Each end user may have different,
subjective criteria for qualifying a layout as “good”. However, one common goal exists
behind all the criteria and standards: the drawing must be easy to understand and provide
easy navigation through the complex structure of the graph.

These topics are pursued in the following sections:

◆ What is a Good Layout?

◆ Methods for Using Layout Algorithms

What is a Good Layout?

To deal with the various needs of different applications, many classes of graph layout
algorithms have been developed. A layout algorithm addresses one or more quality criteria,
depending on the type of graph and the features of the algorithm, when laying out a graph.
The most common criteria are:

◆ Minimizing the number of link crossings

◆ Minimizing the total area of the drawing
14 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

2. B
asic C

o
n

cep
ts

G R A P H L A Y O U T : A B R I E F I N T R O D U C T I O N
◆ Minimizing the number of bends (in orthogonal drawings)

◆ Maximizing the smallest angle formed by consecutive incident links

◆ Maximizing the display of symmetries

How can a layout algorithm meet each of these quality criteria and standards of
representation? If you look at each individual criteria, some can be met quite easily, at least
for some classes of graphs. For other classes, it may be quite difficult to produce a drawing
that meets the criteria. For example, minimizing the number of link crossings is relatively
simple for trees (that is, graphs without cycles). However, for general graphs, minimizing
the number of link crossings is a mathematical NP-complete problem (that is, with all
known algorithms, the time required to perform the layout grows very fast with the size of
the graph.)

Moreover, if you want to meet several criteria at the same time, an optimal solution simply
may not exist with respect to each individual criteria because many of the criteria are
mutually contradictory. Time-consuming trade-offs may be necessary. In addition, it is not a
trivial task to assign weights to each criteria. Multicriteria optimization is, in most cases, too
complex to implement and much too time-consuming. For these reasons, layout algorithms
are often based on heuristics and may provide less than optimal solutions with respect to one
or more of the criteria. Fortunately, in practical terms, the layout algorithms will still often
provide reasonably readable drawings.

Methods for Using Layout Algorithms

Layout algorithms can be employed in a variety of ways in the various applications in which
they are used. The most common ways of using an algorithm are the following:

◆ Automatic layout

The layout algorithm does everything without any user intervention, except perhaps the
choice of the layout algorithm to be used. Sometimes a set or rules can be coded to
choose automatically (and dynamically) the most appropriate layout algorithm for the
particular type of graph being laid out.

◆ Semiautomatic layout

The end user is free to improve the result of the automatic layout procedure by hand. At
times the end user can move and “pin” nodes at desired locations and perform the layout
again. In other cases, a part of the graph is automatically set as “read-only” and the end
user can modify the rest of the layout.

◆ Static layout

The layout algorithm is completely redone (“from scratch”) each time the graph is
changed.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 15

G R A P H L A Y O U T I N I L O G J V I E W S
◆ Incremental layout

When the layout algorithm is performed a second time on a modified graph, it tries to
preserve the stability of the layout as much as possible. The layout is not performed
again from scratch. The layout algorithm also tries to economize CPU time by using the
previous layout as an initial solution. Some layout algorithms and layout styles are
incremental by nature. For others, incremental layout may be impossible.

Graph Layout in ILOG JViews

In ILOG JViews, graphs are instances of the class IlvGrapher. We call these instances
graphers. The nodes, which are instances of IlvGraphic, and the links, which are
instances of IlvLinkImage, “know” how to draw themselves. The nodes can have arbitrary
coordinates or they can be “placed” interactively or by code. All that needs to be done to lay
out the grapher in order to obtain a readable drawing is to compute and to assign appropriate
coordinates for the nodes. In some cases, the shape of the links may also need to be
modified. The main task of the Graph Layout module is to provide support for the operation
of laying out a grapher—that is, drawing the graph.

The Graph Layout module of ILOG JViews benefits from its integration with the graph
visualization and graph manipulation features of the ILOG JViews core library. This core
library provides a wide range of very useful features to build powerful graphic interfaces
easily:

◆ Predefined, extensible types of graphic objects for nodes and links

◆ A customizable mechanism to choose the contact points between links and nodes

◆ Grapher interactor classes

◆ Multiple views of the same grapher

◆ Management of multiple layers

◆ Support for nested graphs

◆ Selections management

◆ Events management

◆ Listeners on the contents of the grapher and/or on the views

◆ Printing facilities

◆ User-defined properties on nodes and links

◆ Input/output operations
16 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

2. B
asic C

o
n

cep
ts

T H E B A S E C L A S S : I L V G R A P H L A Y O U T
For details on these features, see the ILOG JViews Graphics Framework User’s Manual.

The Base Class: IlvGraphLayout

The IlvGraphLayout class is the base class for all layout algorithms. This class is an
abstract class and cannot be used directly. You must use one of its subclasses
(IlvTopologicalMeshLayout, IlvSpringEmbedderLayout,
IlvUniformLengthEdgesLayout, IlvTreeLayout, IlvHierarchicalLayout,
IlvLinkLayout, IlvRandomLayout, IlvBusLayout, IlvCircularLayout,
IlvGridLayout). You can also create your own subclasses to implement other layout
algorithms.

Despite the fact that only subclasses of IlvGraphLayout are directly used to obtain the
layouts, it is still necessary to learn about this class because it contains methods that are
inherited (or overridden) by the subclasses. And, of course, you will need to understand it if
you subclass it yourself.

You can find more information about the class IlvGraphLayout in the following sections:

◆ Basic Operations with IlvGraphLayout on page 17 tells you about the basic methods you
need using the subclasses of IlvGraphLayout.

◆ Layout Parameters and Features in IlvGraphLayout on page 20 contains the methods
that are related to the customization of the layout algorithms.

◆ Using Event Listeners on page 294 tells you about the layout event listener mechanism.

◆ Defining a New Type of Layout on page 328 tells you how to implement new subclasses.

For details on IlvGraphLayout and other graph layout classes, see the ILOG JViews
Graph Layout Reference Manual.

Basic Operations with IlvGraphLayout

When subclassing IlvGraphLayout or when using one of its subclasses, you will normally
use the basic methods described in the following sections:

◆ Instantiating a Subclass of IlvGraphLayout

◆ Attaching a Grapher

Note: The Graph Layout module allows you to add layout capabilities to applications
that do not use the ILOG JViews grapher. For details, see Laying Out a Non-JViews
Grapher on page 303.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 17

B A S I C O P E R A T I O N S W I T H I L V G R A P H L A Y O U T
◆ Performing a Layout

◆ Detaching a Grapher

Instantiating a Subclass of IlvGraphLayout

The class IlvGraphLayout is an abstract class. It has no constructors. You will instantiate
a subclass as shown in the following example:

IlvLinkLayout layout = new IlvLinkLayout();

If you want to use the layout report that is returned by the layout algorithm, you need to
declare a handle for the appropriate layout report class, as shown in the following example:

IlvGraphLayoutReport layoutReport;

For more information on the layout report, see Using a Layout Report on page 292.

Attaching a Grapher

You must attach the grapher before performing the layout. The following method, defined
on the class IlvGraphLayout, allows you to specify the grapher you want to lay out:

void attach(IlvGrapher grapher)

For example:

...
IlvGrapher grapher = new IlvGrapher();
/* Add nodes and links to the grapher here */
layout.attach(grapher);

The attach method does nothing if the specified grapher is already attached. Otherwise, it
first detaches the grapher that is already attached, if any. You can obtain the attached grapher
using the method getGrapher(). If the grapher is attached in this way, a default graph
model is created internally. For details on the graph model, see Using the Graph Model on
page 297. The attached graph model can be obtained by:

IlvGraphModel graphModel = layout.getGraphModel();

After layout, when you no longer need the layout instance, you should call the detach
method. If the detach method is not called, some objects may not be garbage-collected.
This method also performs cleaning operations on the grapher (properties that may have
been added by the layout algorithm on the grapher’s objects are removed).

Warning: Notice that such an internally created model is not allowed to be attached to any
other layout instance, nor to be used in any way once it has been detached from the layout
instance. For details, see Using the IlvGrapherAdapter on page 302.
18 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

2. B
asic C

o
n

cep
ts

B A S I C O P E R A T I O N S W I T H I L V G R A P H L A Y O U T
void detach()

Performing a Layout

The performLayout method starts the layout algorithm using the currently attached
grapher and the current settings for the layout parameters. The method returns a report
object that contains information about the behavior of the layout algorithm.

IlvGraphLayoutReport performLayout()

IlvGraphLayoutReport performLayout(boolean force, boolean redraw)

The first version of the method simply calls the second one with a false value for the first
argument and a true value for the second argument. If the argument force is false, the
layout algorithm first verifies whether it is necessary to perform the layout. It checks internal
flags to see whether the grapher or any of the parameters have been changed since the last
time the layout was successfully performed. A “change” can be any of the following:

◆ Nodes or links were added or removed.

◆ Nodes or links were moved or reshaped.

◆ The value of a layout parameter was modified.

◆ The transformer of a manager view (IlvManagerView) of the grapher has changed.

Users often do not want the layout to be computed again if no changes occurred. If there
were no changes, the method performLayout returns without performing the layout. Note
that if the argument force is passed as true, the verification is no longer performed.

The argument redraw determines whether a redraw of the graph is requested. For details,
see Redrawing the Grapher after Layout on page 296.

The protected abstract method layout(boolean redraw) is then called. This means that
the control is passed to the subclasses that are implementing this method. The
implementation computes the layout and moves the nodes to new positions and/or reshapes
the links.

The performLayout method returns an instance of IlvGraphLayoutReport (or of a
subclass) that contains information about the behavior of the layout algorithm. It tells you
whether the algorithm performed normally, or whether a particular, predefined case
occurred. (For a more detailed description of the layout report, see Using a Layout Report on
page 292.)

Note that the layout report that is returned can be an instance of a subclass of
IlvGraphLayoutReport depending on the particular subclass of IlvGraphLayout you
are using. For example, it will be an instance of IlvTopologicalMeshLayoutReport if
you are using the class IlvTopologicalMeshLayout. Subclasses of
IlvGraphLayoutReport are used to store layout algorithm-dependent information.
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 19

B A S I C O P E R A T I O N S W I T H I L V G R A P H L A Y O U T
You must call the method performLayout inside a try block because it can throw an
exception. The exception can be of the type IlvGraphLayoutException or one of its
subclasses, IlvInappropriateGraphException and
IlvInappropriateLinkException. The first indicates internal problems in the layout
algorithm or an unexpected situation. The second exception indicates that a particular
grapher cannot be laid out with the layout algorithm. For example, the Topological Mesh
Layout cannot be used on an acyclic graph (that is, a pure tree). The third exception indicates
that a particular type of link (or link connector) cannot be used for this layout. The
recommended type of link is IlvPolylineLinkImage or IlvSplineLinkImage (or
subclasses). For layouts that do not reshape the links by adding intermediate points, the class
IlvLinkImage can also be used.

Detaching a Grapher

You call the detach method when you no longer need the layout instance of an attached
grapher. If the detach method is not called, some objects may not be garbage-collected.
This method also performs cleaning operations on the grapher (properties that may have
been added by the layout algorithm on the grapher’s objects are removed).

void detach()
20 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

Pages 21-36 are not available in this
documentation excerpt. Please refer
to the complete product
documentation

C H A P T E R

3. G
ettin

g
 S

tarted

w
ith

 G
rap

h
 L

ayo
u

t

3

Getting Started with Graph Layout

This chapter provides information to get started using the Graph Layout module of
ILOG JViews. The following topics are covered:

◆ Basic Steps for Using Layout Algorithms: A Summary

◆ Sample Java Application
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 37

B A S I C S T E P S F O R U S I N G L A Y O U T A L G O R I T H M S : A S U M M A R Y
Basic Steps for Using Layout Algorithms: A Summary

To use the layout algorithms provided by the Graph Layout module of ILOG JViews, you
will usually perform the following steps:

1. Create a grapher object (IlvGrapher) and fill it with nodes and links.

2. Create an instance of the layout algorithm (any subclass of
ilog.views.graphlayout.IlvGraphLayout).

3. Declare a handle for the corresponding layout report. The layout report is an object in
which the layout algorithm stores information about its behavior. For details see Using a
Layout Report on page 292.

4. Attach the grapher to the layout instance.

5. Modify the default settings for the layout parameters, if needed.

6. Call the performLayout method inside a try block.

7. Read and display information from the layout report.

8. Catch the exceptions.

9. When the layout instance is no longer needed, detach the grapher from the layout
instance.

An application that illustrates these steps is provided in Sample Java Application on
page 38.

Sample Java Application

You can use this application as an example to get started with the layout algorithms of the
Graph Layout module. The example uses the Orthogonal Link Layout, but the principles are
mostly the same for any of the other layouts.

The source code of the application is named LayoutSample1.java and can be found at the
location:

<installdir>/doc/usermansrc/graphlayout/LayoutSample1.java

To compile and run the example, do the following:

1. Go to the graphlayout directory at the above path. (On Windows 98-2000-ME-NT-XP,
you must open a DOS Console).
38 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

3. G
ettin

g
 S

tarted

w
ith

 G
rap

h
 L

ayo
u

t
S A M P L E J A V A A P P L I C A T I O N
2. Set the CLASSPATH variable to the ILOG JViews library and the current directory.

3. Compile the application:

javac LayoutSample1.java

4. Run the application:

java LayoutSample1

The LayoutSample1.java contains the following code:

// the ILOG JViews Graphic Framework
import ilog.views.*;
// the ILOG JViews Graph Layout Framework
import ilog.views.graphlayout.*;
// the ILOG JViews Link Layout
import ilog.views.graphlayout.link.*;
// the Java AWT package
import java.awt.*;

public class LayoutSample1
{
 public static final void main(String[] arg)
 {
 // Create the layout instance
 IlvLinkLayout layout = new IlvLinkLayout();
 // Create the grapher instance
 IlvGrapher grapher = new IlvGrapher();
 // Create the manager view instance
 IlvManagerView view = new IlvManagerView(grapher);
 // An AWT Frame to display
 Frame frame = new Frame("Layout Sample");
 // The name of the IVL file containing the graph data
 final String fileName = "SampleGraph1.ivl";

 // Put the manager view inside an AWT Frame and show it
 frame.add(view);
 frame.setSize(600, 600);
 frame.setVisible(true);

 // Fill the grapher with nodes and links from a JViews IVL file.
 // Alternatively, the nodes and links could be created by code.
 try {
 grapher.read(fileName);
 } catch (Exception e) {
 System.out.println("could not read " + fileName);
 return;
 }

On Windows 98-2000-NT-XP: .;<installdir>\classes\jviewsall.jar

On Unix: .:<installdir>/classes/jviewsall.jar
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 39

S A M P L E J A V A A P P L I C A T I O N
 // Attach the grapher to the layout instance
 layout.attach(grapher);
 try {
 // Perform the layout and get the layout report
 IlvGraphLayoutReport layoutReport = layout.performLayout();

 int code = layoutReport.getCode();

 // Print information from the layout report (optional)
 System.out.println("layout done in " +
 layoutReport.getLayoutTime() +
 " millisec., code = " +
 code + " (" +
 layoutReport.codeToString(code) + ")");
 }

 // Catch the exceptions
 catch (IlvGraphLayoutException e) {
 System.out.println(e.getMessage());
 }

 // Detach the grapher from the layout instance
 layout.detach();
 }
 // ... further methods ...
}

The sample Java application produces the graph shown in Figure 3.1:
40 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

3. G
ettin

g
 S

tarted

w
ith

 G
rap

h
 L

ayo
u

t
S A M P L E J A V A A P P L I C A T I O N
Figure 3.1

Figure 3.1 Output from Sample Java Application
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 41

S A M P L E J A V A A P P L I C A T I O N
42 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

C H A P T E R

4. L
ayo

u
t A

lg
o

rith
m

s

4

Layout Algorithms

This chapter describes the layout algorithms of the ILOG JViews Graph Layout module. The
following topics are covered:

◆ Determining the Appropriate Layout Algorithm

◆ Topological Mesh Layout (TML)

◆ Spring Embedder Layout

◆ Uniform Length Edges Layout

◆ Tree Layout

◆ Hierarchical Layout

◆ Link Layout

◆ Random Layout

◆ Bus Layout

◆ Circular Layout

◆ Grid Layout

◆ Recursive Layout

◆ Multiple Layout
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 43

D E T E R M I N I N G T H E A P P R O P R I A T E L A Y O U T A L G O R I T H M
Determining the Appropriate Layout Algorithm

When using the Graph Layout module, you need to determine which of the ready-to-use
layout algorithms is appropriate for your particular needs. Some layout algorithms can
handle a wide range of graphs. Others are designed for particular classes of graphs and will
give poor results or will reject graphs that do not belong to these classes. For example, a
Tree Layout algorithm is designed for tree graphs, but not cyclic graphs. Therefore, it is
important to lay out a graph using the appropriate layout algorithm.

Table 4.1 can help you determine which of the layout algorithms is best suited for a
particular type of graph.

◆ Across the top of the table are various classifications of different types of graphs.

◆ The layout algorithms appear on the left side of the table.

◆ Table cells containing illustrations indicate when a layout algorithm is applicable for a
particular type of graph.

By identifying the general characteristics of the graph you want to lay out, you can see from
the table whether a layout algorithm is suited for that particular type of graph.

For example, if you know that the structure of the graph is a tree, you can look at the
Domain-Independent Graphs/Trees column to see which layout algorithms are appropriate.
The Spring Embedder Layout, Uniform Length Edges Layout, Tree Layout, and
Hierarchical Layout could all be used. Use the illustrations in the table cells to help you
further narrow your choice.

The Recursive Layout can be used to control the layout of nested graphs (containing
subgraphs and intergraph links). This is in particular useful if different layout styles should
be applied to different subgraphs. The other layout algorithms such as Spring Embedder
Layout, Tree Layout, and Hierarchical Layout treat only flat graphs (unless otherwise
noted), that is, a specific layout instance is only able to lay out the nodes and links of the
attached graph, but not the nodes and links of its subgraphs. The Recursive Layout allows
you to specify which flat layout is used for which subgraph, and it traverses the entire nested
graph recursively when applying the layout. As result, the entire nested graph is laid out.

The Multiple Layout can be used to combine several different layouts into one instance. In
this case, they become sublayouts of the Multiple Layout instance. This is useful in
particular for nested graphs when used in combination with the Recursive Layout. The
Multiple Layout ensures that the normal layout, the routing of the intergraph links, and the
layout of labels are applied in the correct order to a nested graph.

Click on an image to see a larger graph.
44 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

4. L
ayo

u
t A

lg
o

rith
m

s

D E T E R M I N I N G T H E A P P R O P R I A T E L A Y O U T A L G O R I T H M

Table 4.1 Layout Algorithms and Common Types of Graphs

Layout

Domain-Independent Graphs

Telecom-Oriented
Representations

Trees Cyclic Graphs
Combination of

Cycles and
Trees

Any Graph

Topological
Mesh Layout

Requires
(semi)manual
refinements

Spring
Embedder
Layout

Preferable to
avoid heavily
interconnected
graphs (large
number of
cycles)

I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 45

D E T E R M I N I N G T H E A P P R O P R I A T E L A Y O U T A L G O R I T H M
Uniform Length
Edges Layout

Preferable to
avoid heavily
interconnected
graphs (large
number of
cycles)

Tree Layout

Table 4.1 Layout Algorithms and Common Types of Graphs (Continued)

Layout

Domain-Independent Graphs

Telecom-Oriented
Representations

Trees Cyclic Graphs
Combination of

Cycles and
Trees

Any Graph
46 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

4. L
ayo

u
t A

lg
o

rith
m

s

D E T E R M I N I N G T H E A P P R O P R I A T E L A Y O U T A L G O R I T H M
Hierarchical
Layout

Link Layout

Bus Layout

For bus topologies

Table 4.1 Layout Algorithms and Common Types of Graphs (Continued)

Layout

Domain-Independent Graphs

Telecom-Oriented
Representations

Trees Cyclic Graphs
Combination of

Cycles and
Trees

Any Graph
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 47

D E T E R M I N I N G T H E A P P R O P R I A T E L A Y O U T A L G O R I T H M
Circular Layout

For interconnected
ring/star topologies

Grid Layout

Note that the
algorithm does
not take into
account the links
between the
nodes.

Recursive
Layout

Nested graphs.

Multiple Layout Combination of
multiple different
layout algorithms
on the same
graph (in
particular for
nested graphs).

Table 4.1 Layout Algorithms and Common Types of Graphs (Continued)

Layout

Domain-Independent Graphs

Telecom-Oriented
Representations

Trees Cyclic Graphs
Combination of

Cycles and
Trees

Any Graph
48 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

4. L
ayo

u
t A

lg
o

rith
m

s

T Y P I C A L W A Y S F O R C H O O S I N G T H E L A Y O U T
Typical Ways for Choosing the Layout

Determining an appropriate algorithm for the graph can be done either by the end user at run
time or by the programmer of the application. This process can be semiautomatic, where
user intervention is involved, or automatic, where the application does everything with no
user intervention.

◆ Semiautomatic layout

For applications using a semiautomatic layout, the choice of the layout algorithm is done
by the end user. The application can provide a menu or some other way to select the
layout algorithm.

In some cases, this may be an iterative process. The user may try different layout
algorithms with different values for the parameters and/or may apply manual refinements
in order to find the best layout. Eventually, the application can provide some help using
textual explanations or by automatically checking the graph to find out to which class it
belongs. For example, to detect whether the graph that has been attached to a layout
instance is a tree, the IlvGraphLayoutUtil class provides the following method:

static boolean IsTree(IlvGraphLayout layout, Object startNode)

For details on this method, see the corresponding section of the reference manual.

◆ Automatic layout

If an automatic layout is needed, the choice of the layout algorithm can be:

● Dynamically chosen at run time using heuristics or rules to determine the appropriate
layout algorithm depending on the structure and/or size of the graph.

● Hard-coded if the developer knows what types of graphs will be used and can
determine the appropriate layout algorithm.

Procedure for Dynamically Choosing the Layout Algorithm

If nothing is known about the graphs that the application will need to lay out, the developer
can write a routine that automatically chooses the layout algorithm at run-time. The
following simple rules could be applied:

1. If the nodes of the graph cannot be moved (they are geo-positioned), use the Link
Layout.

2. If the graph is a tree, use the Tree Layout.

3. Otherwise, use one of the layout algorithms that are the less restricted to a given graph
category, especially the Uniform Length Edges Layout. (The preferred length of the links
could also be computed with respect to the size of the nodes.)
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 49

T Y P I C A L W A Y S F O R C H O O S I N G T H E L A Y O U T
4. If the graph is too large, apply a “divide-and-conquer” strategy. Cut the graph into
several subgraphs and apply the layout separately to each subgraph. If the graph is
disconnected, you can use the built-in support provided by the layout library to perform
this task automatically. (See Layout of Connected Components on page 25.)

5. If the graph is nested, use the Recursive Layout algorithm that controls which subgraph
is laid out by which (flat) sublayout. Use step 1-4) above to determine the sublayouts for
the subgraphs.

Procedure for Hard-coding when Layout is Applied at Programming Time

A special case occurs when the application will deal with only a small set of graphs that are
known at the time the application is built. In this case, the layout can be performed at
programming time. A possible step-by-step procedure may be the following:

1. Create each graph manually with a graph editor or by code.

2. Try different layout algorithms and choose the best for each graph.

3. Apply manual refinements to the layout if needed.

4. Store the result of the layout by saving the graphers in .ivl files.

5. Provide these files with the application.

6. When the application is used, these files will simply be loaded. (There will be no need to
perform the layout again since it is already done.)

Procedure for Hard-coding when Layout is Applied at Run Time

If the choice of the layout algorithm is hard-coded, but the layout must be performed at run
time because the graphs are not known at programming time, one possible step-by-step
procedure for the choice of the appropriate layout algorithm may be the following:

1. Look at sample graphs for your domain.

2. Try to determine some generalities about the properties of the structure and the size of
the graph (Is the graph cyclic? Is the graph a tree? Is the graph a combination of the two?
What is the number of nodes and links in the graph?)

3. Pick one of the corresponding layout algorithms from Table 4.1 on page 45.

4. Try out the algorithm on one or more samples.
50 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

4. L
ayo

u
t A

lg
o

rith
m

s

G E N E R I C F E A T U R E S A N D P A R A M E T E R S S U P P O R T
Generic Features and Parameters Support

The generic features and parameters of the Graph Layout module allow you to customize the
behavior of the layout algorithms to meet specific needs and to perform useful operations
such as saving the layout parameters in a file. Table 4.2 indicates the generic features and
parameters that are supported by each layout algorithm. These parameters are defined in the
base class for all layout algorithms, IlvGraphLayout.

Table 4.2 Generic Parameters Supported by Layout Algorithms

Layout
Algorithm

A
llo

w
ed

 T
im

e

A
n

im
at

io
n

F
ix

ed
 L

in
ks

F
ix

ed
 N

o
d

es

L
ay

o
u

t
o

f
C

o
n

n
ec

te
d

 C
o

m
p

o
n

en
ts

L
ay

o
u

t
R

eg
io

n

L
in

k
C

lip
p

in
g

L
in

k
C

o
n

n
ec

ti
o

n
 B

o
x

M
em

o
ry

 S
av

in
g

s

P
er

ce
n

ta
g

e
C

o
m

p
le

te

R
an

d
o

m
 G

en
er

at
o

r
S

ee
d

 V
al

u
e

S
av

e
P

ar
am

et
er

s
to

 F
ile

S
to

p
 Im

m
ed

ia
te

ly

Topological Mesh
Layout (TML)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Spring Embedder
Layout

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Uniform Length
Edges Layout

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Tree Layout Yes Yes Yes Yes Yes Yes Yes Yes Yes

Hierarchical
Layout

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Link Layout Yes Yes Yes Yes Yes Yes

Random Layout Yes Yes Yes Yes Yes Yes Yes

Bus Layout Yes Yes Yes Yes Yes Yes Yes Yes

Circular Layout Yes Yes Yes Yes Yes Yes

Grid Layout Yes Yes Yes Yes Yes

Recursive Layout Yes Yes Yes Yes

Multiple Layout Yes Yes Yes Yes Yes
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 51

L A Y O U T C H A R A C T E R I S T I C S
Layout Characteristics

It is often useful to know how certain settings will affect the resulting layout of the graph
after the layout algorithm has been applied. Table 4.3 provides additional information about
the behavior of the layout algorithms.

Table 4.3 Layout Characteristics of Layout Algorithms

Layout Algorithm
Do the initial positions of the
nodes affect the layout?1

How do I get a different layout of the same graph
when I perform the layout a second time?

Topological Mesh
Layout (TML)

No You can completely change the layout by using the
starting node, outer cycle, and fixed nodes
parameters. To change only the dimensions of the
graph, use the layout region parameter.

Spring Embedder
Layout

No This is the default behavior when using the default
parameter settings (the random generator is
initialized differently each time). To change only the
dimensions of the graph, use the layout region and
spring constant parameters.

Uniform Length Edges
Layout

Yes You can completely change the layout by changing
the initial positions of the nodes. To change only the
dimensions of the graph, use the preferred length of
the links or size of the layout region.

Tree Layout Yes (if incremental mode is
switched on)

In incremental mode, you can change the layout by
changing the initial positions of the nodes.
Furthermore, you can change the layout by selecting
a different root node. To change only the dimensions
of the graph, use the various offset parameters.

Hierarchical Layout Yes (if incremental mode is
switched on)

In incremental mode, you can change the layout by
changing the initial positions of the nodes.
Furthermore, you can use specified node level
indices to change the level structure. You can use
specified node position indices to change the node
order within the levels. You can change the layout by
changing the link priorities. To change only the
dimensions of the graph, use the various offset
parameters.
52 I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T

4. L
ayo

u
t A

lg
o

rith
m

s

L A Y O U T C H A R A C T E R I S T I C S
Link Layout Yes Link Layout routes the links depending on the node
positions. It does not move the nodes. You can
change the link style option and the dimensional
parameters, such as the link offset and final
segment length. You can also specify the rules for
computing the connection points of the links.

Random Layout No This is the default behavior when using the default
parameter settings (the random generator is
initialized differently each time).

Bus Layout No, except in incremental mode You change the dimensions of the graph by using the
various dimensional parameters.

Circular Layout No You can completely change the layout by using
clustering settings and the root clusters parameter.
You can change the dimensions of the graph by using
the dimensional parameters.

Grid Layout No, except in incremental mode You can change various dimensional parameters,
layout mode, and so on.

Recursive Layout Depends on the behavior of the
sublayouts applied to the
subgraphs.

Depends on the behavior of the sublayouts applied to
the subgraphs. You can change the parameters of
the sublayouts individually.

Multiple Layout Depends on the behavior of the
sublayout that is applied first.

Depends on the behavior of the sublayouts of the
Multiple Layout instance. You can change the
parameters of the sublayouts individually.

1 All of the layout classes provided in ILOG JViews (except the Link Layout) support the fixed nodes mechanism. This means that you
can specify nodes that cannot be moved during the layout.

Table 4.3 Layout Characteristics of Layout Algorithms (Continued)

Layout Algorithm
Do the initial positions of the
nodes affect the layout?1

How do I get a different layout of the same graph
when I perform the layout a second time?
I L O G J V I E W S G R A P H L A Y O U T 5 . 5 — U S E R ’ S M A N U A L - E X C E R P T 53

Pages 54 on are not available in this
documentation excerpt. Please refer
to the complete product
documentation

	ILOG JViews 5.5 Graph Layout User’s Manual
	Table of Contents
	About This Manual
	What Is in This Manual
	Related Documentation

	Introducing the Graph Layout Module
	What is the Graph Layout Module of ILOG JViews?
	Composition of the ILOG JViews Graph Layout Module
	The ILOG JViews Graph Layout Algorithms
	Features of the ILOG JViews Graph Layout Module
	ILOG JViews Graph Layout Module in User Interface Applications

	Basic Concepts
	Graph Layout: A Brief Introduction
	What is a Good Layout?
	Methods for Using Layout Algorithms

	Graph Layout in ILOG JViews
	The Base Class: IlvGraphLayout
	Basic Operations with IlvGraphLayout
	Instantiating a Subclass of IlvGraphLayout
	Attaching a Grapher
	Performing a Layout
	Detaching a Grapher

	Getting Started with Graph Layout
	Basic Steps for Using Layout Algorithms: A Summary
	Sample Java Application

	Layout Algorithms
	Determining the Appropriate Layout Algorithm
	Typical Ways for Choosing the Layout
	Generic Features and Parameters Support
	Layout Characteristics

